Cellular insulin resistance disrupts hypothalamic mHypoA-POMC/GFP neuronal signaling pathways.
نویسندگان
چکیده
POMC neurons play a central role in the maintenance of whole-body energy homeostasis. This balance requires proper regulation of POMC neurons by metabolic hormones, such as insulin. However, the heterogeneous cellular population of the intact hypothalamus presents challenges for examining the molecular mechanisms underlying the potent anorexigenic effects of POMC neurons, and there is currently a complete lack of mature POMC neuronal cell models for study. To this end, we have generated novel, immortalized, adult-derived POMC-expressing/α-MSH-secreting cell models, mHypoA-POMC/GFP lines 1-4, representing the fluorescence-activated cell-sorted POMC population from primary POMC-eGFP mouse hypothalamus. The presence of Pomc mRNA in these cell lines was confirmed, and α-MSH was detected via immunofluorescence. α-MSH secretion in the mHypoA-POMC/GFP-1 was found to increase in response to 10 ng/ml ciliary neurotrophic factor (CNTF) or 10 nM insulin as determined by enzyme immunoassay. Further experiments using the mHypoA-POMC/GFP-1 cell line revealed that 10 ng/ml CNTF increases Pomc mRNA at 1 and 2 h after treatment, whereas insulin elicited an increase in Pomc mRNA level and decreases in insulin receptor (Insr (Ir)) mRNA level at 4 h. Furthermore, the activation of IR-mediated downstream second messengers was examined by western blot analysis, following the induction of cellular insulin resistance, which resulted in a loss of insulin-mediated regulation of Pomc and Ir mRNAs. The development of these immortalized neurons will be invaluable for the elucidation of the cellular and molecular mechanisms that underlie POMC neuronal function under normal and perturbed physiological conditions.
منابع مشابه
Glucose responsiveness in a novel adult-derived GnRH cell line, mHypoA-GnRH/GFP: involvement of AMP-activated protein kinase.
Glucose regulates energy homeostasis and reproductive function within the hypothalamus. The underlying mechanisms responsible for glucose regulation of GnRH gene transcription were investigated using a novel murine immortalized, adult-derived hypothalamic cell line, mHypoA-GnRH/GFP. Analysis of GnRH mRNA synthesis and secretion following agonist treatment demonstrated that the mHypoA-GnRH/GFP c...
متن کاملNeonatal Insulin Action Impairs Hypothalamic Neurocircuit Formation in Response to Maternal High-Fat Feeding
Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high-fat diet (HFD) feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic...
متن کاملTransgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.
Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-spe...
متن کاملPhosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis.
Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruptio...
متن کاملCellular leptin resistance impairs the leptin-mediated suppression of neuropeptide Y secretion in hypothalamic neurons.
Evidence shows that neuropeptide Y (NPY) neurons are involved in mediating the anorexigenic action of leptin via neuronal circuits in the hypothalamus. However, studies have produced limited data on the cellular processes involved and whether hypothalamic NPY neurons are susceptible to cellular leptin resistance. To investigate the direct regulation of NPY secretion by leptin, we used novel NPY...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of endocrinology
دوره 220 1 شماره
صفحات -
تاریخ انتشار 2014